

ADVANCED SUBSIDIARY GCE

MATHEMATICS

Further Pure Mathematics 1

4725

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required:

• Scientific or graphical calculator

Friday 11 June 2010 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of **4** pages. Any blank pages are indicated.

1 Prove by induction that, for
$$n \ge 1$$
, $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$. [5]

2

2 The matrices **A**, **B** and **C** are given by $\mathbf{A} = (1 - 4)$, $\mathbf{B} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 & 0 \\ -2 & 2 \end{pmatrix}$. Find

- (ii) BA 4C. [4]
- 3 Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form. [6]
- 4 The complex numbers *a* and *b* are given by a = 7 + 6i and b = 1 3i. Showing clearly how you obtain your answers, find
 - (i) |a-2b| and $\arg(a-2b)$, [4]

(ii)
$$\frac{b}{a}$$
, giving your answer in the form $x + iy$. [3]

- 5 (a) Write down the matrix that represents a reflection in the line y = x. [2]
 - (b) Describe fully the geometrical transformation represented by each of the following matrices:

(i)
$$\begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$$
, [2]

(ii)
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}$$
. [2]

- 6 (i) Sketch on a single Argand diagram the loci given by
 - (a) |z-3+4i| = 5, [2]
 - **(b)** |z| = |z 6|. [2]
 - (ii) Indicate, by shading, the region of the Argand diagram for which

$$|z-3+4i| \le 5$$
 and $|z| \ge |z-6|$. [2]

7 The quadratic equation $x^2 + 2kx + k = 0$, where k is a non-zero constant, has roots α and β . Find a quadratic equation with roots $\frac{\alpha + \beta}{\alpha}$ and $\frac{\alpha + \beta}{\beta}$. [7]

8 (i) Show that
$$\frac{1}{\sqrt{r+2} + \sqrt{r}} \equiv \frac{\sqrt{r+2} - \sqrt{r}}{2}$$
. [2]

(ii) Hence find an expression, in terms of *n*, for

$$\sum_{r=1}^{n} \frac{1}{\sqrt{r+2} + \sqrt{r}}.$$
 [6]

(iii) State, giving a brief reason, whether the series $\sum_{r=1}^{\infty} \frac{1}{\sqrt{r+2} + \sqrt{r}}$ converges. [1]

- The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} a & a & -1 \\ 0 & a & 2 \\ 1 & 2 & 1 \end{pmatrix}$. 9
 - (i) Find, in terms of *a*, the determinant of A.
 - (ii) Three simultaneous equations are shown below.
 - x + 2y + z = 1For each of the following values of a, determine whether the equations are consistent or

ay + 2z = 2a

ax + ay - z = -1

inconsistent. If the equations are consistent, determine whether or not there is a unique solution.

- (a) a = 0
- **(b)** a = 1
- (c) a = 2

[6]

[5]

The complex number z, where $0 < \arg z < \frac{1}{2}\pi$, is such that $z^2 = 3 + 4i$. 10

- (i) Use an algebraic method to find z.
 - (ii) Show that $z^3 = 2 + 11i$. [1]

The complex number w is the root of the equation

$$w^6 - 4w^3 + 125 = 0$$

4725 Jun10

for which $-\frac{1}{2}\pi < \arg w < 0$.

(iii) Find w.

© OCR 2010

[5]

[3]

4725	Mark Sche	me		June 2010
1		B1 M1 M1 A1 A1	5 5	Establish result true for $n = 1$ or $n = 2$ Add next term to given sum formula Attempt to factorise or expand and simplify to correct expression Correct expression obtained Specific statement of induction conclusion
2 (i)	(-7)	M1 A1	2	Obtain a single value Obtain correct answer as a matrix
(ii)	$BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$ $\begin{pmatrix} -7 & -20 \\ 11 & -20 \end{pmatrix}$	M1 A1 B1 B1f	t 4 6	Obtain a 2 × 2 matrix All elements correct 4 C seen or implied by correct answer Obtain correct answer, ft for a slip in BA
3	Either $\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ $\frac{1}{3}n(2n-1)(2n+1)$ Or $\sum_{r=1}^{2n} r^2 - 4\sum_{r=1}^{n} r^2$ $\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$ $\frac{1}{3}n(2n-1)(2n+1)$	M1 M1 A1 M1 A1 M1 M1 A1 M1 A1 A1	6	Express as a sum of 3 terms Use standard sum results Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i> and a quadratic Obtain correct answer a.e.f. Express as difference of $2\sum r^2$ series Use standard result Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i> Obtain correct answer

4	(i)	5 + 12i 13 67.4° or 1.18	B1E B1f B1f	ť	Correct real and imaginary parts Correct modulus Correct argument
	(ii)	$-\frac{11}{85}-\frac{27}{85}$ i	M1 A1 A1	3	Multiply by conjugate Obtain correct numerator Obtain correct denominator
		85 85		7	
5	(a)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	B1E	31 2	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i) (ii)	B1E B1E	312 312 6	Stretch, in x-direction sf 5 Rotation, 60° clockwise
6	(i)	(a) (b)	B1E B1E		Circle centre $(3, -4)$, through origin Vertical line, clearly $x = 3$
	(ii)		B1f B1f		Inside their circle And to right of their line, if vertical

7

Either $\alpha + \beta = -2k \quad \alpha\beta = k$

 $y^2 - 4ky + 4k = 0$

0r

$$\alpha + \beta = -2k$$
$$\frac{-2k}{\alpha}$$
$$y = \frac{-2k}{x}$$

 $y^2 - 4ky + 4k = 0$

0r

$$\frac{-k \pm \sqrt{k^2 - k}}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

$$y^2 - 4ky + 4k = 0$$

B1B1	State or use correct results
M1	Attempt to find sum of new roots
A1	Obtain $4k$
M1	Attempt to find product of new roots
A1	Obtain $4k$
B1ft 7	Correct quadratic equation a.e.f.

B1 State or use correct result
B1 State or imply form of new roots
B1 State correct substitution
M1 Rearrange and substitute for x
A1 Correct unsimplified equation
M1 Attempt to clear fractions
A1 Correct quadratic equation a.e.f.

B1 Find roots of original equation

B1 Express both new roots in terms of k

- M1 Attempt to find sum of new roots
- A1 Obtain 4*k*
- M1 Attempt to find product of new roots
- A1 Obtain 4*k*
- B1ft Correct quadratic equation a.e.f.

7

4	725		Mark Scheme		June 2010
8	(i)		M1		Attempt to rationalise denominator or cross multiply
			A1	2	
	(ii)		 M1		Express terms as differences using (i)
	()		M1		Attempt this for at least 1^{st} three terms
			A1		1 st three terms all correct
			A1		Last two terms all correct
			M1		Show pairs cancelling
		$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	A1	6	Obtain correct answer, in terms of <i>n</i>
	·····				
	(iii)		B1	1 9	Sensible statement for divergence
9	(i)		M1		Show correct expansion process for 3 x 3
,	(1)		M1		Correct evaluation of any 2×2
		$\det \mathbf{A} = a^2 - a$		3	Obtain correct answer
		$\det \mathbf{A} = u - u$			
	(ii)	(a)	M1		Find a pair of inconsistent
					equations
			A1		State inconsistent or no solutions
		(b)	M1		Find a repeated equation
			A1 B1		State non unique solutions State that det A is non-zero or find correct
		(c)		ŕ	solution
			B1	6	SC if detA incorrect, can score 2 marks
					for correct deduction of a unique
				9	solution, but only once
10	(i)		M1		Attempt to equate real and imaginary
	()				parts
		$x^2 - y^2 = 3$ $xy = 2$	A1		Obtain both results
		, , , , , , , <u>,</u>	M1		Eliminate to obtain quadratic in x^2 or y^2
			M1		Solve to obtain x or y value
		z = 2 + i	A1	5	Obtain correct answer as a complex no.
	(ii)		B1	1	Obtain given answer correctly
	(iii)		M1		Attempt to solve quadratic equation
	(11)	$w^3 = 2 \pm 11 \mathrm{i}$	A1		Obtain correct answers
			M1		Choose negative sign
			M1		Relate required value to conjugate of (i)
		w = 2 - i	A1	5	Obtain correct answer
				11	